2019

APIC Applied Learning Conference

Antibiotic Stewardship: Understanding and Optimizing the Role of the IP

David Witt, MD, FIDSA, CIC

Disclosures

David Witt: No disclosures

Learning objectives:

- Be able to speak comfortably about the goals of an ABS program
- Gain insights on when, how, and why to advocate for effective ABS
- Identify key roles and advocate for the optimal role for an IP in ABS

- Areas we will cover:
 - What is ABS?
 - Antibiotic overview
 - Antibiotic resistance
 - Possible structures for ABS
 - The optimal role for IPs
 - Data that is available from NHSN (or internally)

- Opening Scenario: What would you do?
 - 42 year old man with cellulitis in his leg. Failed outpatient therapy with azithromycin. Had allergy to penicillin. Now on vancomycin x 1 day – trough 14.2. Tmax 101.2, Weight 264 lbs, erythema right lower leg. Skin intact.
 - What would you suggest?
 - A. Increase the vancomycin since he is allergic to penicillin
 - B. Clarify the allergy to penicillin
 - C. Isolate the patient as he might have resistant S. pyogenes
 - D. Nothing

- Opening Scenario: What would you do?
 - Patient was changed to cefazolin 1 gram every 12 hours and continues febrile
 - A. What would you suggest?
 - B. Increase his cefazolin dose
 - C. Change to daptomycin
 - D. Isolate patient because he has resistant Streptococcus pyogenes
 - E. Nothing

We Picked a Poor Name for ABS

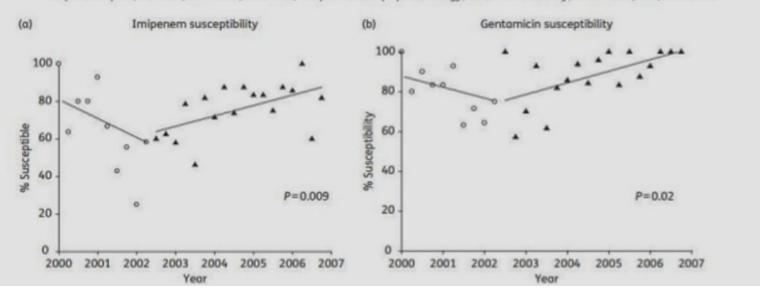
- We have picked a poor name
 - More effective treatment
 - Decreased mortality and morbidity
 - Prevents resistance
 - Prevents patient adverse consequences
 - Avoids IVs and CVCs and associated complications
 - Shortens stays
 - Improves satisfaction with better care, shorter stay and OPAT
 - Saves costs
- We know it when we see it!

Aspects of Antibiotic Stewardship

- Better diagnosis
 - Appropriate investigations
 - Appropriate microbiology
- Optimal antibiotic choice
- Optimal antibiotic dosing
- Optimal antibiotic duration
- Tools
 - Staff education MDs, RNs, Administrators
 - Treatment guidelines
 - Formula restriction
 - Mandatory consults for certain conditions

Aspects of Antibiotic Stewardship

- Treat known or likely site of infection
- Don't treat contaminants or colonization
- Guide empiric treatment by antibiogram
- Target based on cultures and confirmation of infection
- Ensure timely and appropriate initial dosing
 - Pharmacokinetic/dynamic properties
 - Avoid drug interactions
 - Recognize toxicity


Aspects of Antibiotic Stewardship

J Antimicrob Chemother 2010; **65**: 1062–1069 doi:10.1093/jac/dkq058 Advance publication 9 March 2010 Journal of Antimicrobial Chemotherapy

Improved susceptibility of Gram-negative bacteria in an intensive care unit following implementation of a computerized antibiotic decision support system

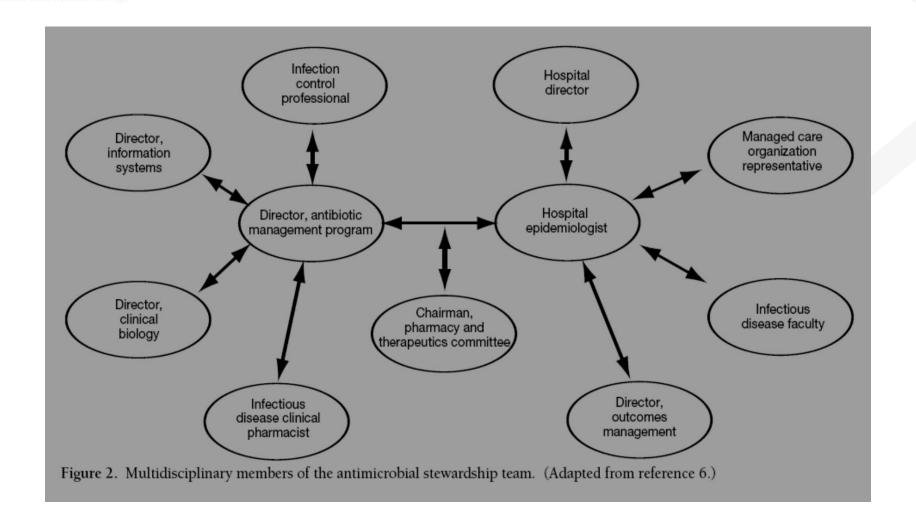
M. K. Yong 1,2*, K. L. Buising 1, A. C. Cheng 2,3 and K. A. Thursky 1

¹Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC 3050, Australia; ²Infectious Diseases Department, Alfred Hospital, Prahran, VIC 3181, Australia; ³Department of Epidemiology, Monash University, Melbourne, VIC, Australia

Aspects of Antibiotic Stewardship – What is the

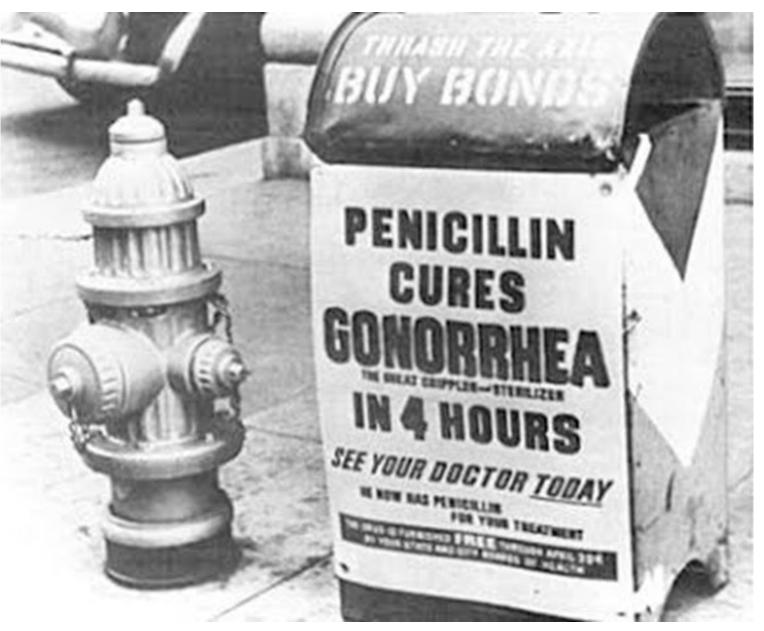
 ANA, CDC White Paper Redefining the Antibiotic Stewardship Team:

Recommendations from the ANA/CDC Workgroup on the Role of Registered Nurses in Hospital Antibiotic Stewardship Practices


Have we really defined the AST???

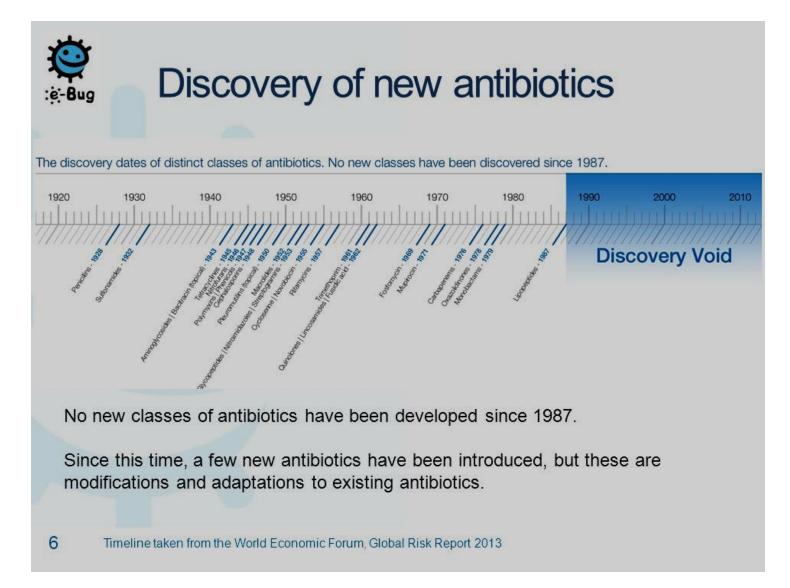
Antibiotic Stewardship Teams

https://www.cdc.gov/antibiotic-use/healthcare/pdfs/ANA-CDC-whitepaper.pdf


Does This Reflect Your Hospital?

ANTIBIOTICS

2019
APIC Applied
Learning
Conference



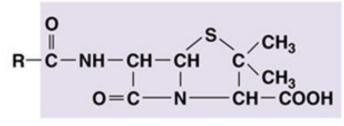
Antibiotics

- Competitive advantage with other bacteria and fungi
 - Penicillin, for example
 - From fungal species
 - First reports missed this critical factor
 - Reported as interfering with growth on petri dishes
 - Sulfa antibiotics were designed

Discovery of New Antibiotics is Not Promising

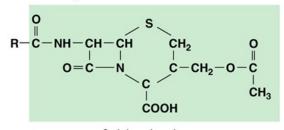
Characteristics of Antibiotics

- No such thing as "powerful"
 - Often activity when others fail taken to imply more effective FALSE!
 - For Staph effectiveness Penicillin > Cefazolin > Vancomycin
 - Effective for the MIC of the organism in levels achieved
- Proper dosing is required
- Longer is not better
- Too short is bad
- Oral = IV if appropriate levels are achieved
- Broad spectrum is not preferred
 - Selects for microbiome disturbance
 - Often less effective than targeted antibiotics



Gram Positive Agents

- Beta-lactams damage cell wall formation
 - Penicillins
 - Cephalosporins
 - "Carbapenems"
 - Combination beta-lactam and beta-lactamase inhibitors
- Vancomycin damage cell wall formation
- Daptomycin multiple disruption of membrane function
- Linezolid Protein synthesis inhibitor
- Clindamycin (kind of) Protein synthesis inhibitor


Penicillins

- Penicillins
 - Pen VK
 - IV Penicillin
 - Benzathine Penicillin
- Aminopenicillins
 - Amoxicillin/ampicillin
- Extended-spectrum penicillins
 - Piperacillin
- Penicillins + β-lactamase inhibitors
 - Amoxicillin + clavulanic acid
 - Ampicillin + sulbactam
 - Piperacillin + tazobactam
- Penicillinase-resistant penicillins
 - Carbapenems: very broad spectrum
 - Monobactam: Gram negative

Penicillin nucleus

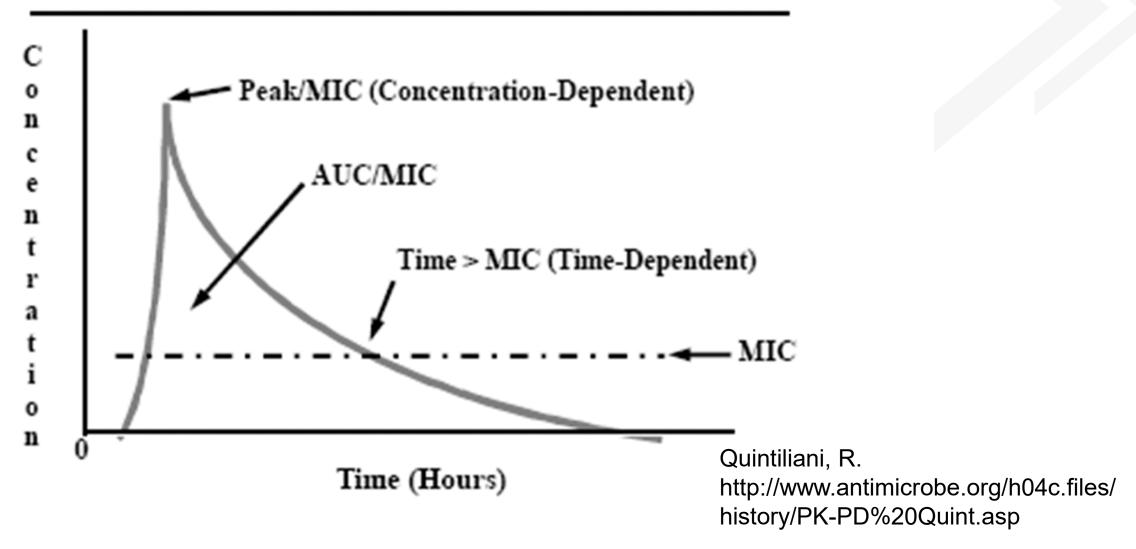
Cephalosporins - Examples

Cephalosporin nucleus

- 1st Cefazolin
 - Primarily Gram positive and some Gram negative
- 2nd Cefotetan
 - Some added Gram negative and anaerobes
- 3rd Ceftriaxone, Ceftazidime
 - Better Gram-negative and some Gram-positive species, especially streptococci

- 4th Cefepime, cefpirome
 - Can have enhanced activity vs both Gram positive and Gram negative
- 5th Ceftaroline (MRSA activity), Ceftobiprole (coming – broad PA, ECOC, MRSA)
- Combination with beta-lactamase inhibitor
 - Ceftazidime + Avibactam
 - Ceftolozane + Tazobactam

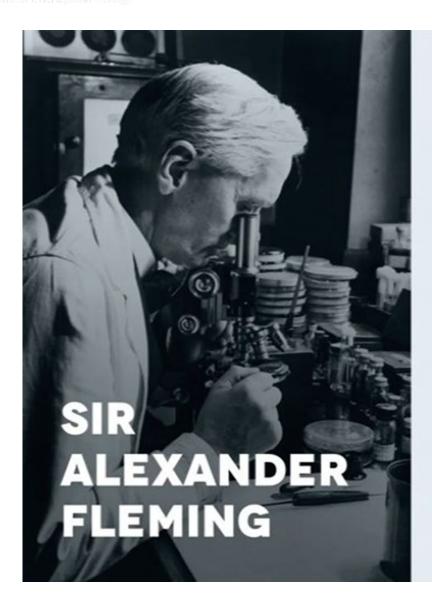
Other Antibiotics


- Quinolones inhibit DNA synthesis
 - Broad Gram negative coverage
 - Some have Gram positive
 - Moxifloxacin has anerobic coverage
 - Ciprofloxacin, levofloxacin
- Rifampin inhibits RNA synthesis
- Linezolid inhibits RNA synthesis
- Polymyxin/colistin inhibit membrane
- Sulfas (TMP/SMX) competes for folate

Other Antibiotics

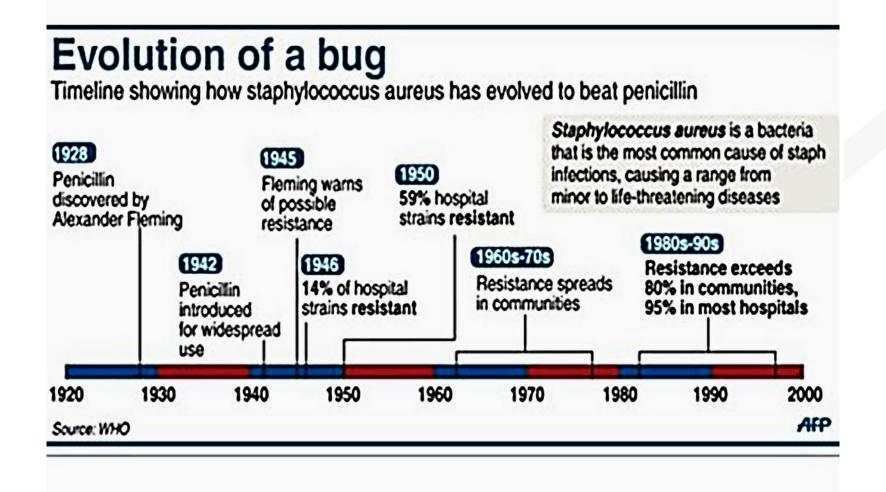
- Aminoglycosides:
 - Pure Gram negative activity
 - Inhibits protein synthesis
 - · Gentamicin, tobramycin, amikacin, streptomycin, neomycin
- Tetracyclines broad activity
 - Inhibits protein synthesis
- Macrolides:
 - Inhibits protein synthesis
 - Erythromycin, azithromycin

How to View Antibiotic Dosing



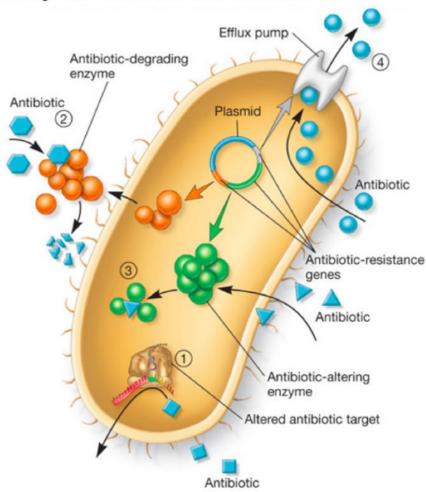
Factors in Antibiotic Selection

- Target the infection empiric vs directed
- Narrow spectrum as possible
- Efficacy
- Toxicity
- Disruption to normal flora
 - Can vary by hospital inducers, *C. difficile* risk
- Planning for home
- Cost/formulary


RESISTANCE

Resistance was Not Unexpected

The thoughtless person playing with penicillin treatment is morally responsible for the death of the man who succumbs to infection with the penicillin-resistant organism.

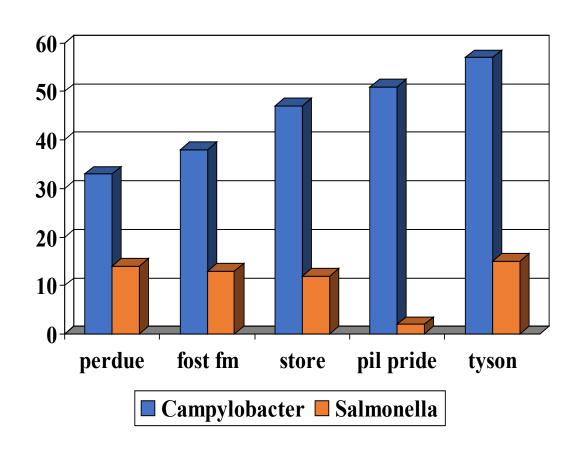

The Original Resistance

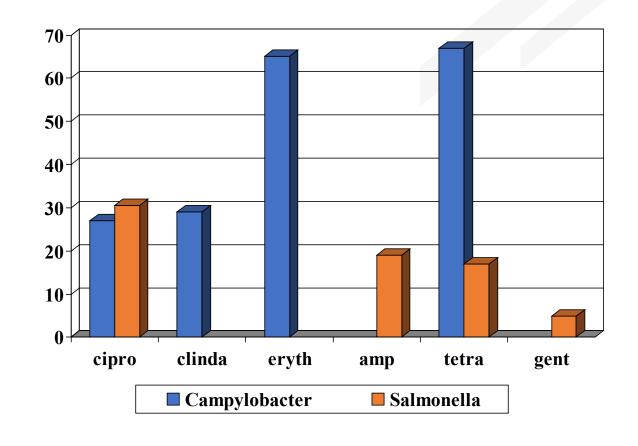
cdc.gov/drugresistance

Many Potential Resistance Mechanisms

Summary of resistance mechanisms

- 1) Altered target
- 2) Inactivation
- 3) Bypass
- 4) Efflux
- 5) Impermeability

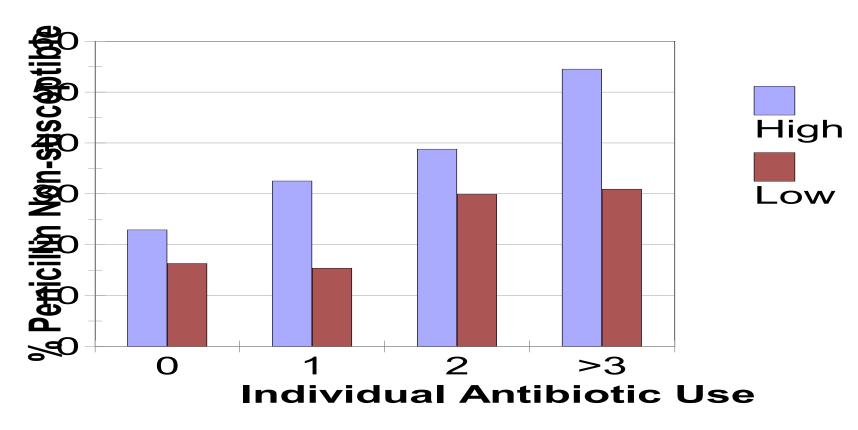

Why are Bacteria Becoming Resistant?


- Antimicrobial use in the community and hospitals
- In veterinary medicine and agriculture
 - 8 million kg used for animals annually
 - 22,000 kg used for fruit trees annually in the U.S.
- In 1954, two million pounds of antibiotics were produced in the US.
 Today > 50 million pounds.
- > 100 million courses of antibiotics in the US annually.
- Increase in empiric antibiotics
- Prolonged and broad-spectrum antibiotic courses
- Repeated antibiotic courses

Why do we Use Antibiotics in Animals?

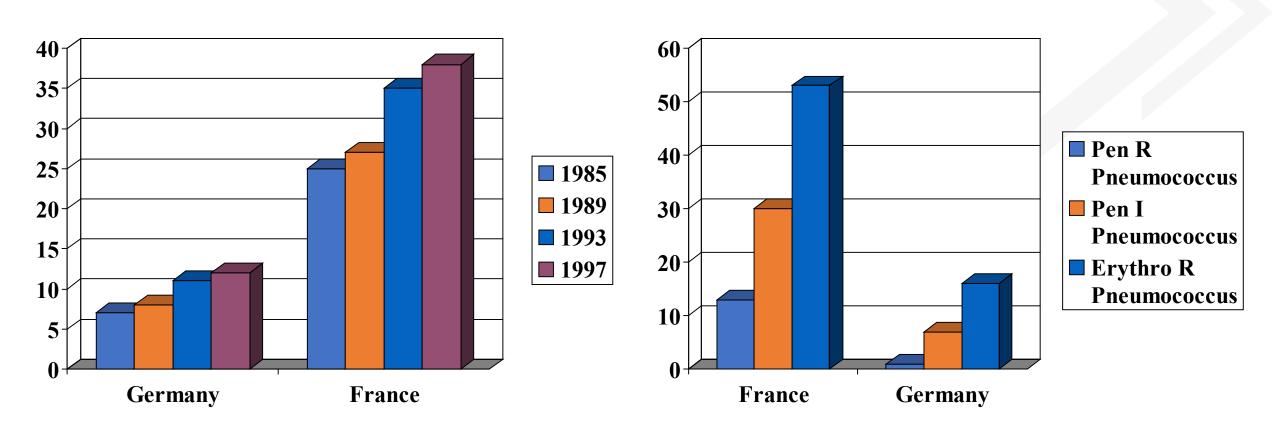
- For treatment of disease.
- For metaprophylaxis.
- For growth enhancement. Usually antibiotics not used in humans
 - In cattle: bacitracin, tetracyclines, lasalocid, monensin
 - In swine: asanilic acid, bambermycin, erythromycin, penicillin, tiamulin, virginiamcin

Resistant Pathogens From Commercial Chickens

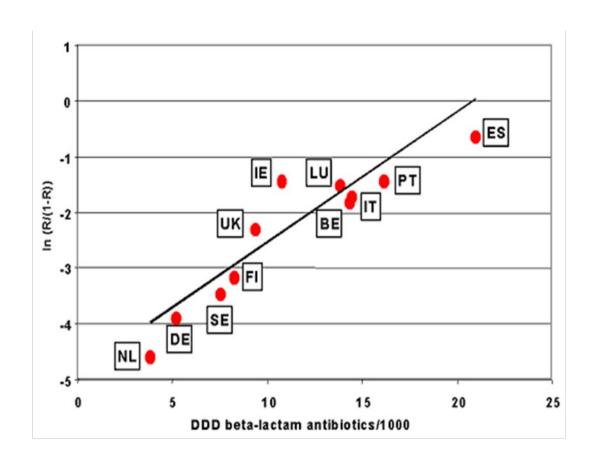

Antibiotic Overuse in U.S. Hospitals

CDC (2010 – 183 hospitals/50,000 discharges)

- > 50% hospitalized inpatients receive antibiotic Rx
- > 37% of this use unnecessary or inappropriate
- Did not address duration
- Did not address spectrum

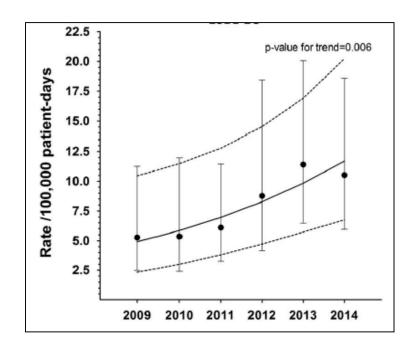

Antibiotic Resistance is a Community Issue

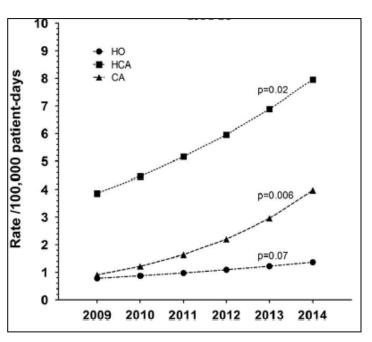
ALL YEARS


(Hennessy T. ISPPD 2002)

Outpatient Antibiotic Use and Resistance

Harbarth, Emerg Infect Dis 2002;8:1460.


Outpatient Antibiotic Use and Resistance



(Bronzwaer et al. Emerging Infectious Diseases 2002)

Epidemiology of ESBL

- ESBL-producing *E coli* infections are **increasing** in the US
 - In the southeastern US, the incidence increased 50% between 2009 and 2014.
- Both hospital and community acquired

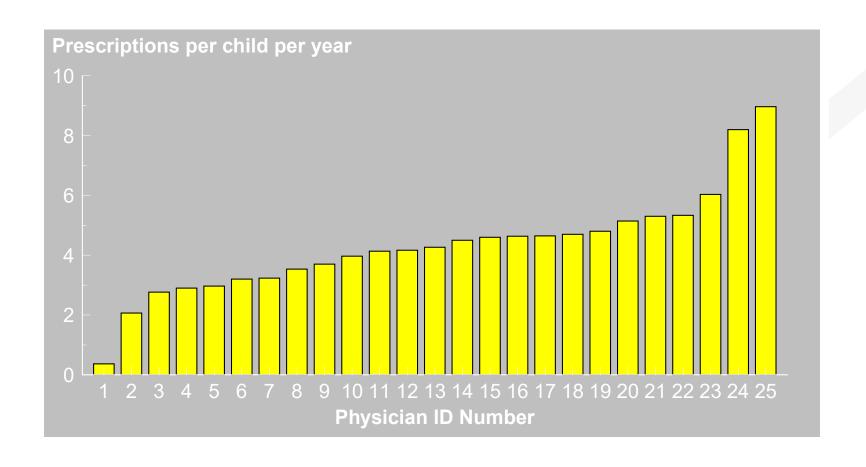
Is This the Future??

ORG		KPNE !	
Susceptibility (ATTENTION: Important ANTIBIOTIC information			
	Klebsiella pneumoniae		
	MBINT		
Ampicillin	>32	RESISTANT	
Ampicillin+Sulbactam	>=32/16	RESISTANT	
Aztreonam	>=64	RESISTANT	
Cefazolin	>=64	RESISTANT	
Cefepime	>=64	RESISTANT	
Ceftazidime	>=64	RESISTANT	
Ceftriaxone	>=64	RESISTANT	
Ciprofloxacin	>=4	RESISTANT	
Ertapenem	Pending		
Gentamicin	<=1	SUSCEPTIBLE	
Levofloxacin	>=8	RESISTANT	
Meropenem	4	RESISTANT	
Piperacillin+Tazobactam	>=128/4	RESISTANT	
Trimethoprim+Sulfamethoxazole	>=16/304	RESISTANT	

What are the elements of antibiotic stewardship and how should infection preventionists participate?

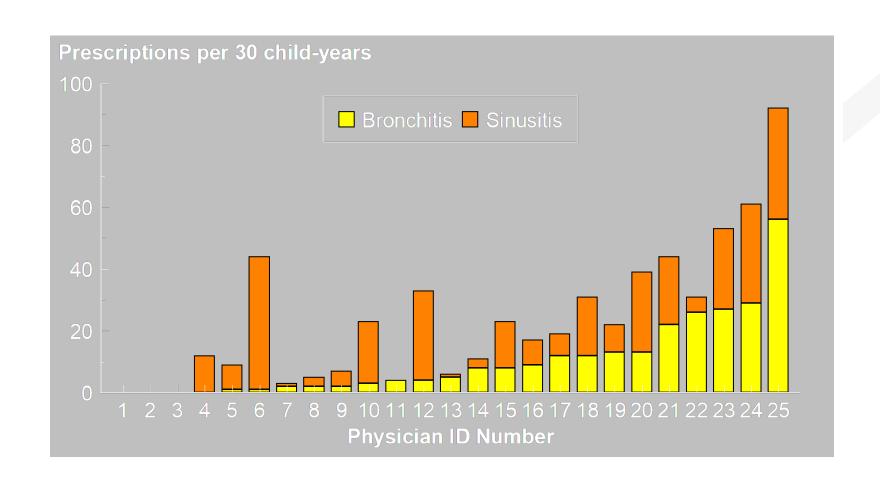
CDC. Core Elements of Hospital Antibiotic Stewardship Programs. 2014.

- Formal statements that the facility supports efforts to improve and monitor antibiotic use
- Include stewardship-related duties in job descriptions and annual performance reviews
- Ensure staff from relevant departments are given sufficient time
- Support training and education
- Ensure participation from the groups that can support stewardship


What are the issues for IPs in view of this?

Physician Issues with Antibiotic Prescribing

Can the IP address these?


Antibiotic Prescribing by 25 Atlanta Office-Based Pediatricians

Dowell, ARI abstract 1997; W2B:77

Antibiotic Prescribing for Bronchitis and Sinusitis by 25 Atlanta Office-Based Pediatricians

It Takes More Than Physician Education to Change

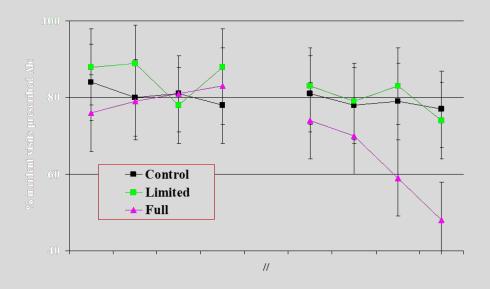
Partner: Kaiser, Denver

Approach

controlled trial: full, partial, or no intervention

Full Intervention

- clinician education: opinion leader model, practice profiling, detailing/practice tips
- household education: brochures, magnets
- office education: posters for office, fact sheets


Partial Intervention

office education only

Gonzales, JAMA 1999;281:1512-19

It Takes More Than Physician Education to Change

Intervention to Reduce Antibiotic Use, Denver, 1997-1998

baseline

study

Gonzales et al. JAMA 1999; 281:1512-9

Physician Barriers

- Physician accountability and acceptance of need for stewardship
- Misperceptions
 - "Powerful" antibiotics
 - Liability
 - Can cover "everything"
- Misalignment of incentives
- Ignorance
- Lack of definition of appropriate use of antimicrobial agents
- Lack of standardized, risk-adjusted measures
- Adaptive/behavioral changes needed to change prescribing practices

Changing Prescriber Behavior

- IPs can identify critical results
- IPs can be interface with staff RNs
- Engagement of senior physician leadership (clinical and administrative) is critical
- Address stewardship message to the clinical leadership within existing clinical groups (rather than just the trainees or the ID doctors) – need a physician champion to work with.
- ID should <u>not</u> be excluded from stewardship process
- Understand local culture and patient population
- Behavior science suggests additional models

The Approach to the Problem Prescriber

- Carefully plan your approach:
 - Pick your battles
 - Timing is important
 - Avoid heat of the moment confrontations (generate light not heat)
- Do your homework Recruit your physician ally
 - Gather as much data as possible
 - DUE: Service and physician specific for several drugs
 - Interview Clinical PharmDs and discretely other MDs
 - Discuss with Department Chief/Chief of staff
 - Understand the MD's Practice and Patient Population
 - Look into the MD's own professional literature

How should IPs participate in antibiotic stewardship?

Take five minutes at your table and come up with your recommendations.

How Should IPs Participate in Stewardship?

- Stewardship definition: the conducting, supervising, or managing of something; especially, the careful and responsible management of something entrusted to one's care.
 - What is our role?
 - Use our strengths
 - Not waste our time
- Suggestions?

So – How DO IPs Participate in Effective Stewardship? Scenario:

64 year old man with onset of sepsis on his 12th day of hospitalization for perforated colon secondary to adenocarcinoma of the colon. His creatinine had been deteriorating since admission, presumptively due to imaging contrast, now 3.6. He had progressive respiratory distress requiring intubation and new pulmonary infiltrates on CXR. He was placed on Vancomycin 1 gm q 12 h, meropenem 1 gm q 8 h, ciprofloxacin 400 mg q 12 h and azithromycin 500 mg qd. He had one loose BM overnight. Blood and urine cultures from his Foley catheter were obtained.

What should the IP do in this setting?

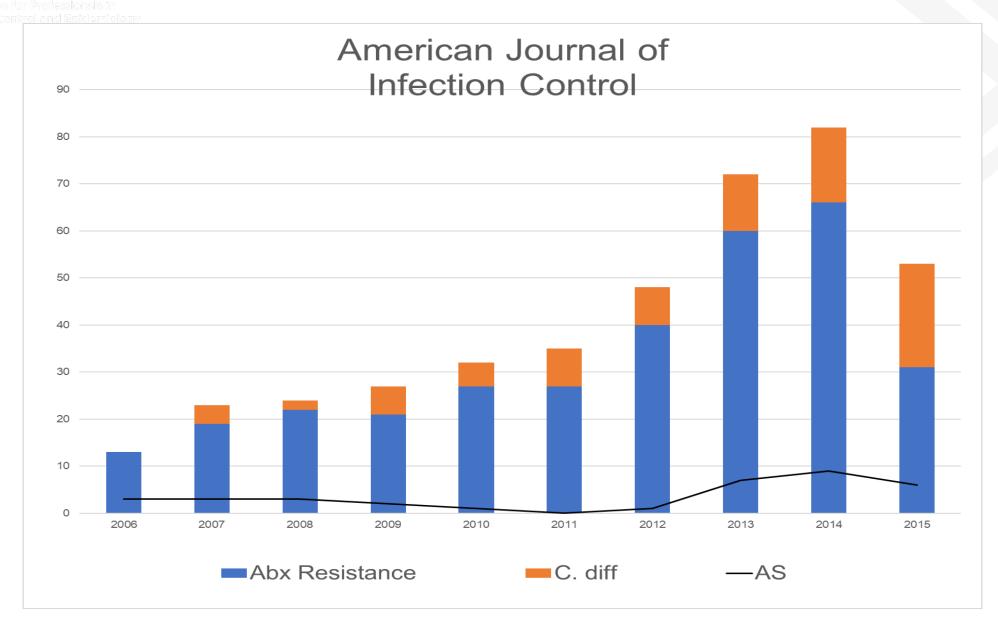
- A. Recommend antibiotic dosing changes?
- B. Encourage removal of the catheter?
- C. Recommend C. difficile testing?
- D. Other actions?

So – How DO IPs Participate in Effective Stewardship? Scenario from above:

64 year old man with onset of sepsis on his 12th day of hospitalization for perforated colon secondary to adenocarcinoma of the colon. His creatinine was now 3.6. He had progressive respiratory distress requiring intubation and new pulmonary infiltrates on CXR. He was placed on Vancomycin 1 gm q 12 h, meropenem 1 gm q 8 h, ciprofloxacin 400 mg q 12 h and azithromycin 500 mg qd. He had one loose BM overnight. Blood and urine cultures from his Foley catheter were obtained.

Sputum cultures grew K. pneumoniae resistant to meropenem, ciprofloxacin and all others agents on routine panel of testing.

What should the IP do in this setting?

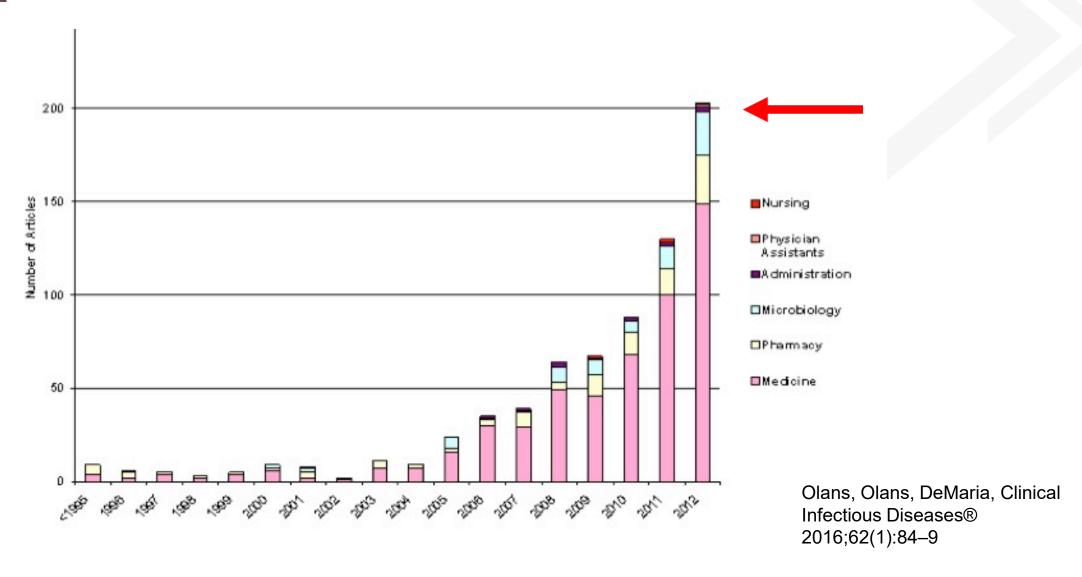

- A. Recommend colistin?
- B. Point out that these antibiotics are ineffective?
- C. Initiate isolation?
- D. Notify Public Health?
- E. B,C, and E and Other actions?

The Role of IPs in ABS

- It is not yet well-defined
 - Various organizations have their views
- It will vary by type of facility
- It will vary by departmental interest in ABS
- It requires making leadership understand what it is
- It requires a willingness to participate on IP's part

Literature in Infection Prevention is Limited*

*So far!


How Does ABS Interface With IPs?

"MRDO infections are more difficult to treat, incur greater treatment costs, and have greater morbidity and mortality than infections caused by organisms susceptible to antibiotics....

Antibiotic misuse and overuse facilitates the development of MDROs, as well as CDI infections – an antibiotic-associated adverse drug event – making AS an important synergistic HAI prevention and control strategy"

Manning, ML,et al, Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update AJIC 46;2018:364-8

Articles in the Literature on ABS

Issues For IPs in Antibiotic Stewardship

- Infection identify causative organisms (true positive)
- Contamination false positive due to contaminate
 - Time to culture positivity
 - Number of positive blood bottles
 - Consider what sites should normally be sterile
 - Consider common causes of culture contamination
 - Question polymicrobial culture results
 - Promote correct antiseptic technique when obtaining cultures
- In essence support "diagnostic stewardship"

What are Contaminants?

Microorganism (No. of Isolates)	No. (%) of Isolates per Indicated Category		
	True Pathogen	Contaminent	Unknown
Staphylococcus aureus (204)	178 (87.2)	13 (6.4)	13 (6.4)
Coagulase-negative staphylococcus (703)	87 (12.4)	575 (81.9)	41 (5.8)
Streptococcus pneumoniae (34)	34 (100)	0	0
Viridans streptococci (71)	27 (38.0)	35 (49.3)	9 (12.7)
Other streptococci (31)	21 (67.7)	6 (19.4)	4 (12.9)
Enterococcus spp. (93)	65 (69.9)	15 (16.1)	13 (14.0)
Corynebacterium spp. (53)	1 (1.9)	51 (96.2)	1 (1.9)
Bacillus spp. (12)	1 (8.3)	11 (91.7)	0
Escherichia coli (143)	142 (99.3)	0	1 (0.7)
Klebsiella pneumoniae (65)	65 (100)	0	0
Other enteric gram-negative bacteria (108)	104 (96.3)	1 (0.9)	3 (2.8)
Pseudomonas aeruginosa (55)	53 (96.4)	1 (1.8)	1 (1.8)
Propionibacterium acnes (48)	0	48 (100)	0
Other Gram-positive anaerobes including Clostridium spp. (35)	19 (54.3)	15 (42.8)	1 (2.9)
Bacteroides fragilis group (18)	16 (88.9)	0	2 (11.1)
Other Gram-negative anaerobes (5)	2 (40)	2 (40)	1 (20)
Candida spp. (60)	56 (93.3)	0	4 (6.7)
Cryptococcus neoformans (8)	8 (100)	0	0

Clin Infect Dis. 1997;24:584-602.

Key Interventions: De-escalation of Therapy

Advantages

- Allows initial use of broadspectrum therapy
- Narrows therapy when appropriate
- May influence future prescribing behavior
- Decreases inappropriate use of antimicrobials
- Reduces adverse events
- May save money overall

Disadvantages

- Still alters flora
- Prescribers may be reluctant to change therapy if the patient is doing well
- If not done correctly, may narrow therapy "inappropriately"

Antibiotic Resistance - Risk of Spread

- Spread of organisms by staff members.
- Rate of transfer = <u>Number of contacts X Risk per event</u>
 [1-q]
- q is unique exposures.
- RNs have many more contacts, but few patients.
- MDs have few contacts with <u>many</u> patients!

IPs are the Interface with Nursing Staff

Table 1. Inpatient Admission: Antimicrobial Stewardship Tasks and Functions Performed by Nurses¹⁸

Activity/Task	Person Responsible	Functions the Nurse Performs
Appropriate triage and isolation	Infection preventionist	Assesses the source of infection and appropriate precautions. An infection preventionist may subsequently be called for a consultation.
Accurate antibiotic allergy history	Pharmacist	Gathers information about the patient's allergy history, performs medication reconciliation, and records this in the medical record.
Early and appropriate cultures	Hospitalist, microbiologist	Obtains cultures before starting antibiotics and sends these to the microbiology laboratory. Monitors culture results and reports these to the physician.
Timely antibiotic initiation	Hospitalist, infectious disease specialist, pharmacist	Receives the orders, reviews the dose and timing of dose schedule for accuracy, checks for history of allergy, and administers antibiotics and documents administration.

Olans, RD, Olans, RN, Witt, DJ. Good Nursing Is Good Antibiotic Stewardship Am J Nur 2017; 117(8):58-63

IPs are the Interface with Nursing Staff

Table 2. Inpatient Stay: Antimicrobial Stewardship Tasks and Functions Performed by Nurses¹⁸

Olans, RD, Olans, RN, Witt,
DJ. Good Nursing Is Good
Antibiotic Stewardship
Am J Nur 2017; 117(8):58-
63

Activity/Task	Person Responsible	Functions the Nurse Performs	
Progress reporting	Hospitalist, infectious disease specialist	Cares for the patient 24 hours a day, 7 days a week; monitors and communicates daily patient progress.	
Antibiotic adjustment based on microbiology reports	Hospitalist, infectious disease specialist, microbiologist	Typically receives laboratory and radiology reports first; coordinates results and communicates them to the treating physicians.	
Antibiotic dosing, culture and sensitivity reporting, and deescalation	Infectious disease specialist, microbiologist, pharmacist	Updates clinical and laboratory renal function results, drug levels, and preliminary and final microbiology results.	
Adverse events	Hospitalist, pharmacist	Monitors and reports to the physician and pharmacist any adverse events, including diarrhea.	
Antibiotic orders	Hospitalist, infectious disease specialist	Reviews patient's clinical status and changes in medications.	
Antibiotic resistance	Infectious disease specialist, hospitalist, microbiologist	t, Reviews culture and sensitivity results and reports "bug-drug" mismatches. Time outs and antibiotic deescalation are used to reassess the patient's clinical status.	
Superinfection and resistant infection	Infectious disease specialist, infection preventionist, microbiologist	Monitors patient response and initiates appropriate changes in isolation precautions.	

2019
APIC Applied
Learning
Conference

IPs are the Interface with Nursing Staff

Table 3. Inpatient Discharge: Antimicrobial Stewardship Tasks and Functions Performed by Nurses¹⁸

Activity/Task	Person Responsible	Functions the Nurse Performs	
Transition patients from IV to oral antibiotics and to outpatient antibiotic therapy	Case manager, infectious disease specialist, pharmacist	Monitors patient's clinical progress and capacity to take oral medications.	
Length of stay: monitors patient's progress 24 hours a day, 7 days a week	Administrator, case manager, infectious disease specialist	Reviews patient's response to therapy and capacity for discharge to home and rehabilitation needs.	
Patient education and medication reconciliation	Hospitalist, infectious disease specialist, pharmacist	Educates patient and family and performs discharge teaching.	
Manages transition to outpatient visiting nurse service, skilled nursing facility, or long-term care facility as well as readmission to the hospital	Administrator, case manager, infection preventionist	Communicates patient's diagnosis, management, and medications to the nurse at the visiting nurse service, skilled nursing facility, or long-term care facility.	

Olans, RD, Olans, RN, Witt, DJ. Good Nursing Is Good Antibiotic Stewardship Am J Nur 2017; 117(8):58-63

How Does ABS Interface With IPs?

"They (IPs) do engage a diverse range of clinical disciplines across practice settings in HAI prevention. IPs have substantial contact with bedside nurses, often together reviewing patients who develop HAIs as part of routine daily activities.....

They can leverage these strong collegial relationships to influence and facilitate nursing's supporting role in initiating antibiotic timeouts, performing antibiotic reconciliation during patient transitions of care, and educating patients and families about safe and appropriate antibiotic use."

Manning, ML,et al, Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update AJIC 46;2018:364-8

How Does ABS Interface With IPs - Results?

"Creating educational strategies to address each discipline's clinical interests and make the case for why IPC and AS is of value to them and their patients is essential....

A logical area for IPC education participation is to ensure that front-line physicians and nurses are aware of the indications for testing as well as the risks associated with inappropriate testing.

Some specific examples include indications for obtaining and appropriate collection of urine cultures, indications for obtaining culture from endotracheal tubes, and indications for testing for CDI infections."

Manning, ML, et al. Antimicrobial stewardship and infection prevention—leveraging the synergy: A position paper update AJIC 46;2018:364-8

How Does ABS Interface With IPs - Results?

- Benefits of appropriate culturing:
 - Appropriate cultures improve the chances of identifying the offending microorganism
 - Administration of antimicrobials before culture collection may decrease culture yields
 - More difficult to deescalate therapy without cultures
- Potential role for IP:
 - Educate RNs on obtaining accurate allergy histories
 - Train in getting cultures expeditiously and correctly
 - Encourage appropriate culturing
 - Discourage inappropriate culturing

How Does ABS Interface With IPs - Results?

Antibiotic stewardship programs reduced the incidence of infections and colonization:

- MDRO Gram-negative (51% reduction (95% CI 0·35–0·68; p<0·0001)
- ESBL (48%; 0·27–0·98; p=0·0428)
- MRSA 37%; 0.63, 0.45–0.88; p=0.0065

C difficile infection reduction (32%; 0.68, 0.53-0.88; p=0.0029).

- Antibiotic stewardship programs were more effective when implemented with:
- Infection control measures (IR 0.69, 0.54–0.88; p=0.0030),
- Hand-hygiene interventions (0·34, 0·21–0·54; p<0·0001)

Bauer, Cochrane Rev Lancet Infect Dis 2017; 17: 990-1001

IPs Unique capabilities for ABS

- You appreciate the importance of antibiotic resistance
- You are used to multi-disciplinary linkages
- You are a recognized source for information and education
- You know your hospitals
- You are experienced at operationalizing critical interventions (CAUTI, CLABSI)
- You won't wash your hands of this critical problem

What are the Most Important Processes for IPs to do in ABS?

- A. Round every day with ABS team?
- B. Review all antibiotics daily?
- C. Review MRDO alerts and ensure appropriate isolation?
- D. Review MRDO alerts and ensure and target patient's team?
- E. Review MRDO alerts and ensure appropriate antibiotics?
- F. Educate staff regarding MDROs identified?
- G. Ensure appropriate cultures are obtained
- H. Nursing education

How to measure antibiotic appropriateness?

What Data do You Want to Measure?

- What are your sources?
- What categories of information do you need?
- Who will you present it to?

Measures of Antibiotic Use

• DDDs (defined daily dose)

total usage/ average prescribed dose patient days

- DOTs (days of therapy) Number of days an antibiotic was prescribed on
- What are the advantages of each?

Measures of Antibiotic Use

What other factors modify analysis of antibiotic use metrics?

Potential Factors That Affect Antibiotic Usage

Yu, K, et al. CID **2018;67(11):1677–85**

Table 1. Proportion of Total Patient-Days and Factors Considered for Risk Adjustment in Predicting Expected Days of Therapy Among 2680580 Admissions

Characteristic	Total Patient-Days = 8585300
Facility factor	
Hospital teaching status	
Teaching	74 %
Nonteaching	26%
Unit type	
Medical/surgical	48.8%
Maternity	13.1%
Stepdown	9.7%
Critical care	8.1%
Perioperative	16.9%
Pediatric medical/surgical	2.8%
Pediatric critical care unit	0.6%
dministrative factor	
Age on date of admission, y	F74 00.4
Mean ± SD	57.4 ± 22.4
Sax	
Female	58%
Male	42%
Admission type	01.40
Urgent	61.4%
Emergency	25.2%
Elective Admission source	13.4%
	90.9%
Home	
Residential care/long-term care	1.9%
Hospital transfer	9.1%
Other	6.3%
Admitted through emergency department Yes	49.8%
No	50.2%
Transfer from skilled nursing facility	50.2%
Yes	2%
No	98%
Patient class	55 %
Inpatient	76%
Outpatient medical	14%
Outpatient surgery	10%
Time spent in observation	10.70
Yes	21.5%
No	78.5%
DRG, present or not	
Yes	76%
No (day surgery and/or short observa- tions stays)	24%
Infection diagnosis present on admission	
Yes	30.5%
No	69.5%
% of days in ICU location (days at risk in IC at risk for hospital stay)	CU / total days
0% days in ICU	84%
1%-49% days in ICU	6.4%
50%-99% days in ICU	6.4%
100% days in ICU	3.2%
Case mix index	
Mean ± SD	1.6 ± 2.2

Table 1. Continued

Characteristic	Total Patient-Days = 858530
Surgical DRG indicator	
Yes	30.4%
No	69.6%
Clinical factor	
First WBC count result within 2	24 h of admission
Mean ± SD	11.2 ± 8.6
First creatinine result within 24	h of admission
Mean ± SD	1.4 ± 1.7
Charlson score	
Mean ± SD	4.2 ± 4.5
DxCG risk soore ^a	
Missing for 2.6% of days	
Mean ± SD	11.6 ± 22.6
Emergency department visits i	in prior 7 d (count)
0	89.2%
1	9.6%
≥2	1.2%
Outpatient office visits in prior	7 d (count)
0	90.8%
1	7.5%
2	1.4%
≥3	0.3%
Outpatient antibiotics in past 7	d
Yes	6.3%
No	93.7%
History of MRSA ^b	
Yes	3.2%
No	96.8%
History of ESBL ^c	
Yes	3.1%
No	96.9%
History of drug-resistant Enten	obacteriaceae ^d
Yes	9.4%
No	90.6%
History of drug-resistant gram-	positive species®
Yes	3.9%
No	96.1%

Abbreviations: DRG, diagnosis-related group; ESBL, extended-spectrum β-lactamase; ICU, intensive care unit; MRSA, methicilin-rasistant Staphylococcus aureus; SD, standard deviation: WBC, white blood ceil.

*Varisk Health risk score predicting clinic cost during the current year based on age, gender, and diagnosis data from past 12 months. Medicare model used for Medicare patients, commercial model for all others.

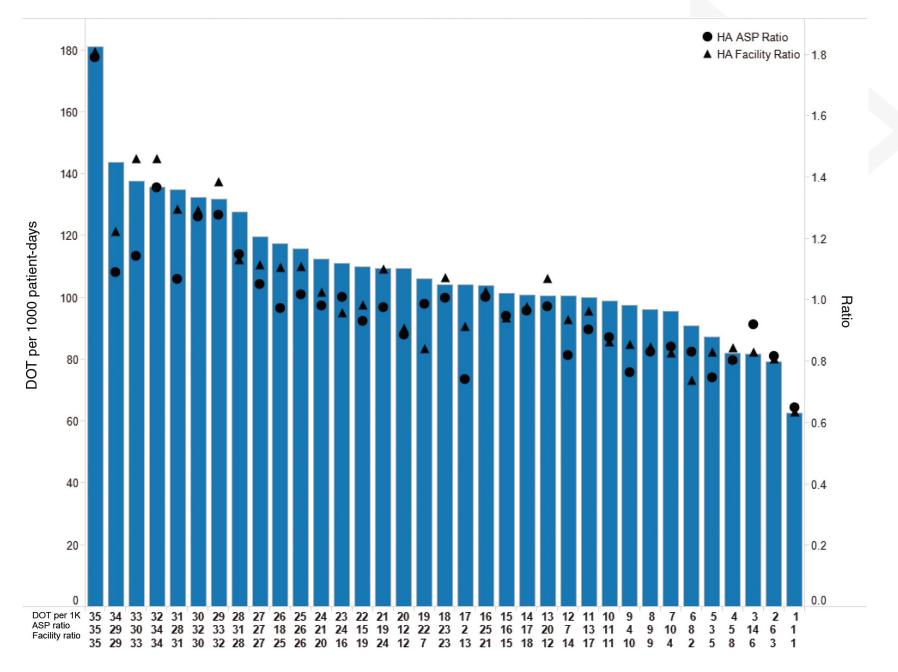
Methodology for Assessing Results

We were interested in 3 primary evaluations concerning the models:

 What were the most contributing variables from the complex model to help inform the construction of a simplified ASP model?

[°]Laboratory culture result that is positive for MRSA within 12 months prior to admission.
°ESBL laboratory culture result indicating Enterobacteriaceae with resistance to any of cef-

^{*}ESBL laboratory culture result indicating Enterobacteriaceae with resistance to any of celtazidime, cetepime, cetotaxime, or cetriaxone.


^{9.} aboratory culture result indicating Enterobecteriaceae with resistance to any of cefazolin, opportunities, or trimethoprim-sulfamethoxazolia.

^{*}Laboratory culture result in the past year indicating MRSA or vancomycin-resistant Enterococcus.

Different Risk Adjustment Models Lead to Erroneous Analysis

Yu, K, et al. CID **2018;67(11):1677–85**

Data Options

- You may have internal pharmacy data
- NHSN Antibiotic Module
- P&T can request data
- You may have data mining available

NHSN Antibiotic Module

- Standardized Antimicrobial Administration Ratio
- (SAAR) = Observed (O) Antimicrobial Use

 Predicted (P) Antimicrobial Use
- The predicted antimicrobial use is calculated using predictive models developed by CDC and applied to nationally aggregated 2017 AU data reported to NHSN from the same group of patient care location types.

NHSN Antibiotic Module

AU Line List

Note: This example uses fictitious data for illustrative purposes only.

National Healthcare Safety Network

Line Listing - All Submitted AU Data by Location

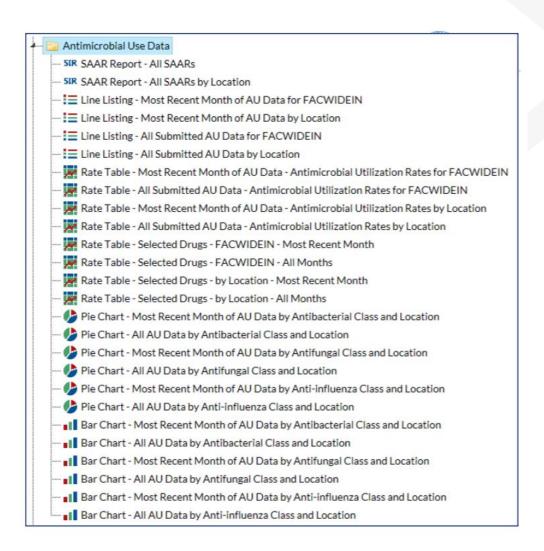
As of: December 3, 2018 at 3:09 PM

Date Range: SUMMARYAU summaryYQ 2017Q3 to 2017Q3

if (((location = 4MICU)))

Location=4MICU

Summary Year/Month	Antimicrobial Agent Description	Antimicrobial Days	Days Present	Admissions	Route:	Route:	Route: Digestive	Route: Respiratory	Location
2017M07	AMAN - Amantadine	0	500		0	0	0	0	4MICU
2017M08	AMAN - Amantadine	0	482		0	0	0	0	4MICU
2017M07	AMK - Amikacin	0	500		0	0	0	0	4MICU
2017M08	AMK - Amikacin	0	482		0	0	0	0	4MICU
2017M07	AMOX - Amoxicillin	0	500		0	0	0	0	4MICU
1 2017M08	AMOX - Amoxicillin	2	482		0	0	2	0	4MICU
2017M07	AMOXWC - Amoxicillin with Clavulanate	2	500		0	0	2	0	4MICU
2017M08	AMOXWC - Amoxicillin with Clavulanate	2	482		0	0	2	0	4MICU
2017M07	AMP - Ampicillin	0	500		0	0	0	0	4MICU
2017M08	AMP - Ampicillin	6	482		0	6	0	0	4MICU
2017M07	AMPH - Amphotericin B	0	500		0	0	0	0	4MICU
2017M08	AMPH - Amphotericin B	0	482		0	0	0	0	4MICU
2017M07	AMPHOT- Amphotericin B Liposomal	0	500		0	0	0	0	4MICU

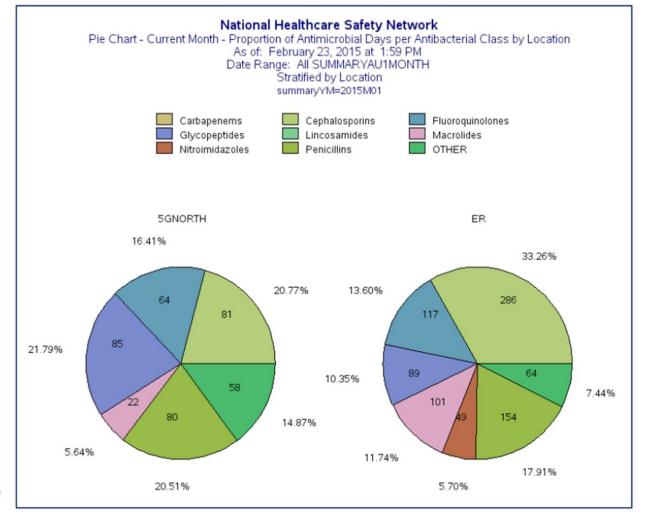

- In August 2017, there were two Amoxicillin antimicrobial days in the 4MICU. Both of these antimicrobial days were administered via the digestive route.
- 2. In August 2017, there were six total Ampicillin antimicrobial days in the 4MICU. All of these antimicrobial days were administered via the IV route.

https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/aur/au-qrg-linelist.pdf

AU Option – NHSN Analysis Reports

- Basic analysis reports available
 - Line lists
 - Rate tables
 - Pie charts
 - Bar charts
 - SAARs (Standardized Antimicrobial Administration Ratio)

Antibacterial Agent Categories Used for SAAR Calculations*

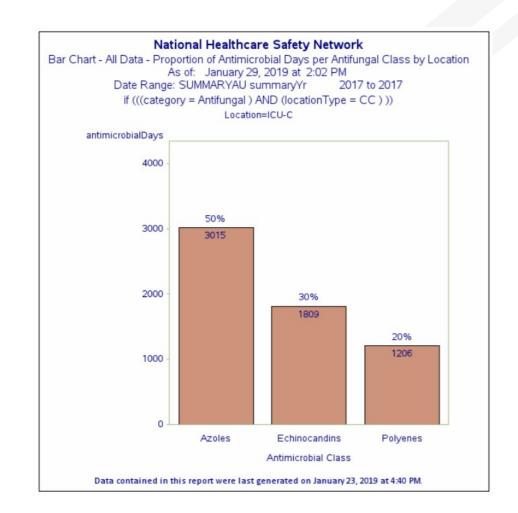


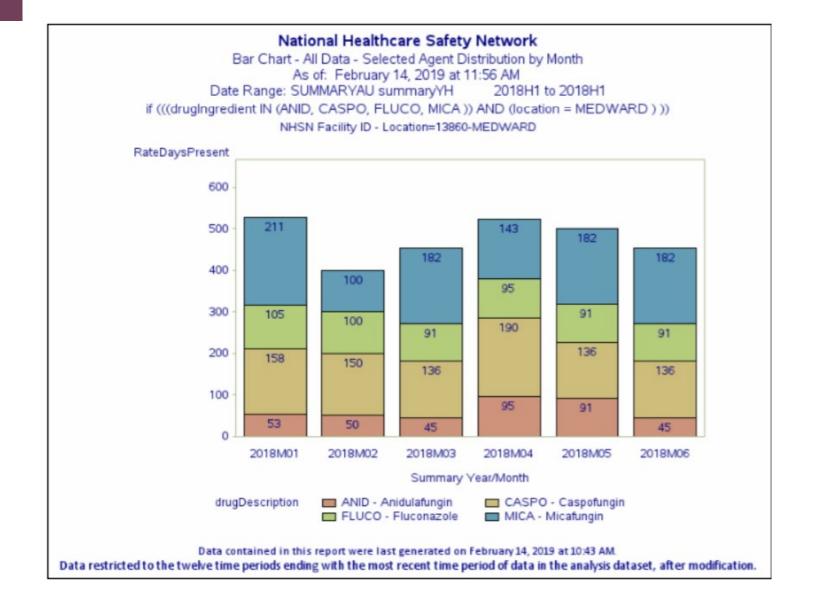
- High value targets for antimicrobial stewardship programs:
 - Broad spectrum agents predominantly used for hospital-onset/multi-drug resistant bacteria – aminoglycosides, carbapenems (except ertapenem), 4th and 5th gen. cephalosporins, penicillin B-lactam/b-lactamase inhibitor combinations, and other agents
 - Broad spectrum agents predominantly used for community-acquired infection –
 Ertapenem, some cephalosporins, and some fluroquinolones
 - Anti-MRSA agents Ceftaroline, Dalbavancin, Daptomycin, Linezolid, Oritavancin, Quinupristin/Dalfopristin, Tedizolid, Telavancin, and Vancomycin (IV only)
 - Agents predominantly used for surgical site infection prophylaxis (IV only) Cefazolin, Cefotetan, Cefoxitin, Cefuroxime, and Cephalexin
- High level indicators for antimicrobial stewardship programs:
 - 5. All antibacterial agents All antibacterial agents included in NHSN AUR protocol

NHSN Antibiotic Module – By Location

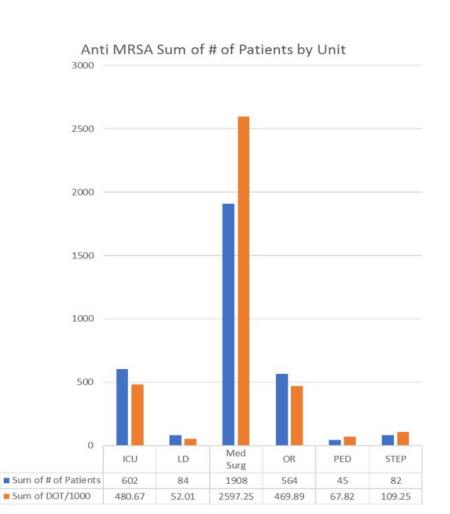
AU Option – Pie Chart

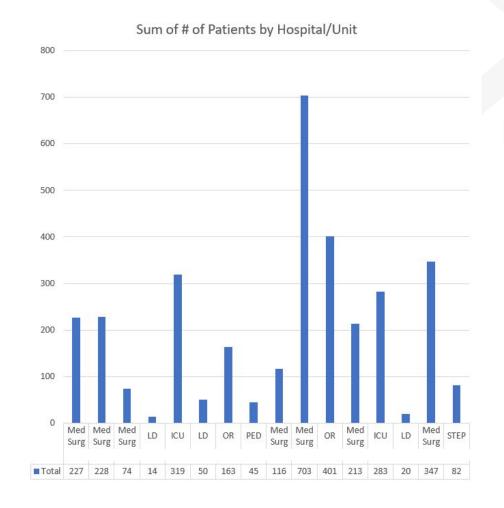
- Shows proportion of antimicrobial days per class
- Modified to show proportions by:
 - Category
 - Drug
 - Time period
 - Location

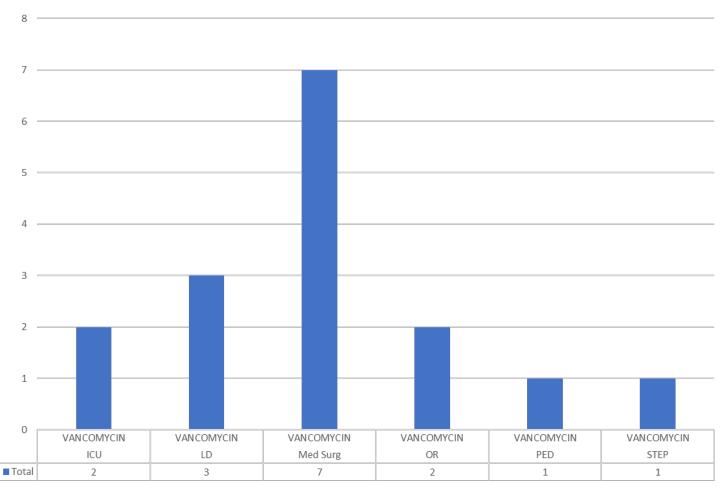


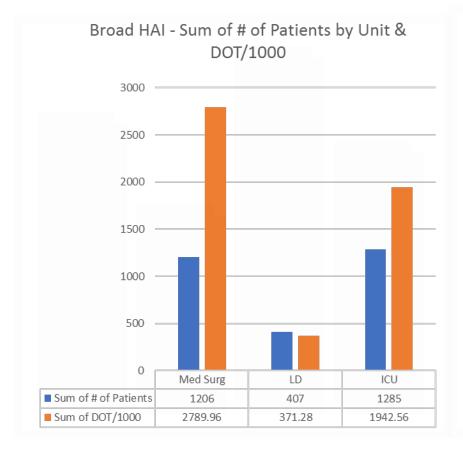

*Data for example only

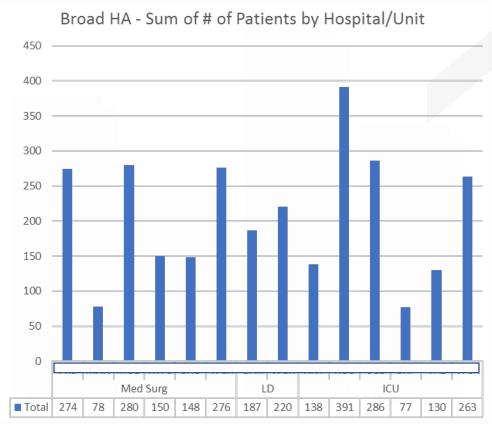
NHSN Antibiotic Module


Bar Chart


- Shows antibiotic use by location
- Shows proportion of each drug by location
- Can filter by:
 - Location
 - Time period
 - Antibiotic
 - Antibiotic category


Anti-MRSA Category Breakdown




Anti-MRSA Category Breakdown

Broad HAI Category Breakdown

Standardized Antimicrobial Administration Ratio (SAAR)

- Observed-to-Predicted Ratio for antibiotic use.
- SAAR allows facilities to compare their AU to the AU of a standard referent population (i.e., NHSN baseline)
- Observed AU: antimicrobial days of therapy reported by a hospital for a specified group of antimicrobial agents used in a specified patient care location or group of locations
- Predicted AU: antimicrobial days of therapy predicted for a hospital for a specified group of antimicrobial agents used in a specified patient care location or group of locations on the basis of negative binomial regression modeling applied to nationally aggregated AU data

Standardized Antimicrobial Administration Ratio (SAAR)

- Interpreting SAAR values
- A SAAR value <1 may indicate underuse of antimicrobials
- A SAAR value=1 indicates observed AU is equivalent to predicted AU
- A SAAR value >1 may indicate overuse of antimicrobials

Note: A SAAR alone is not a definitive measure of the appropriateness or
judiciousness of antimicrobial use, and any SAAR may warrant further
investigation. For example, a SAAR above 1.0 that does not achieve statistical
significance may be associated with meaningful excess of antimicrobial use and
further investigation may be needed. Also, a SAAR that is statistically different from
1.0 does not mean that further investigation will be productive.

Presentation of SAAR (NHSN)

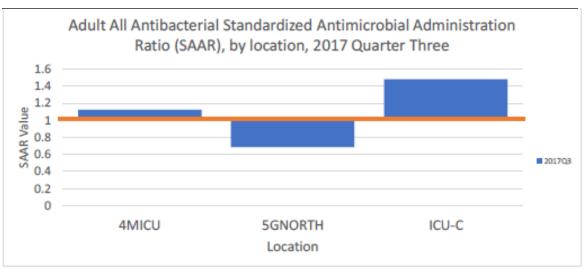
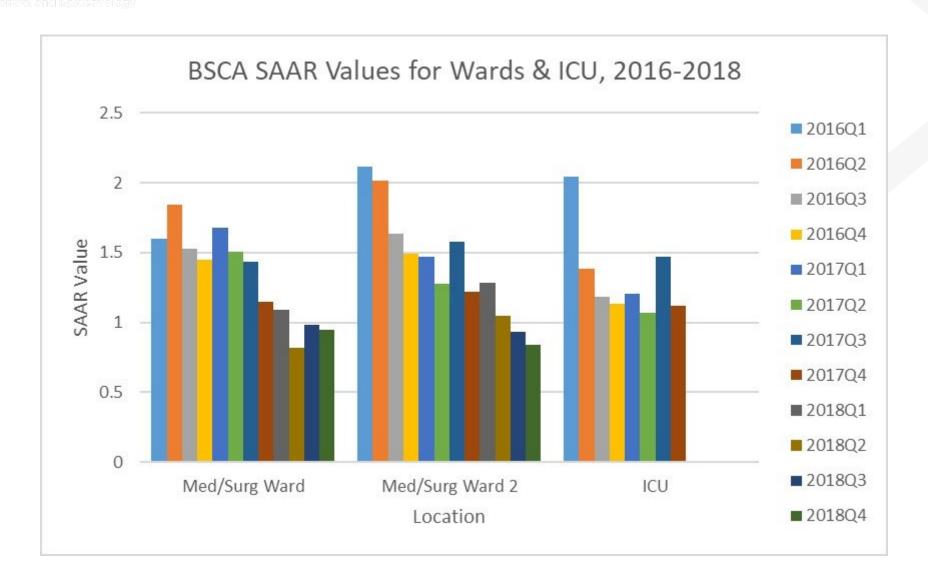
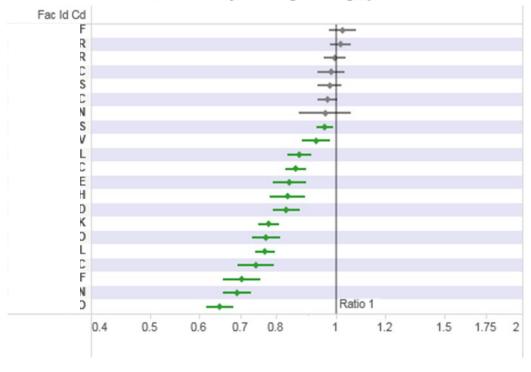
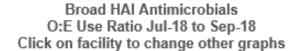



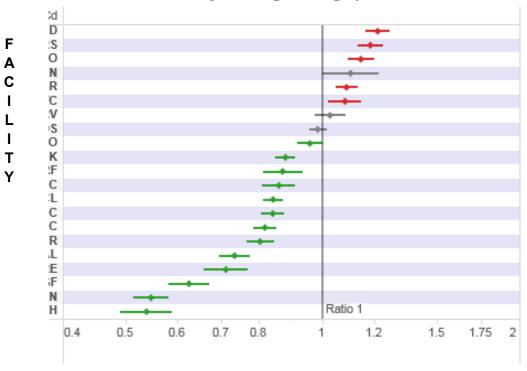
Figure 8

Table 1


All Antibacterial SAAR (2017 Baseline) by Location, Facility XYZ - Q3 2017						
location	Antimicrobial	AU Days		SAAR	SAAR 95% CI	
	Days	Predicted				
4MICU	522		465.23	1.122	1.076, 1.172	
5GNORTH	493		718.65	0.686	0.622, 0.742	
ICU-C	400		270.12	1.482	1.185, 1.783	

Presentation of SAAR (NHSN) - Fluoroquinolones


Broad CAI Category Breakdown


Broad CAI Antimicrobials O:E Use Ratio Jul-18 to Sep-18 Click on facility to change other graphs

- 6 / 21 Hospitals with O/E > 1
- Ceftriaxone driving utilization
- Unit with the most instances: OR (3)
- Other Units: LD (2), ICU (1), PED (1), PICU (1)

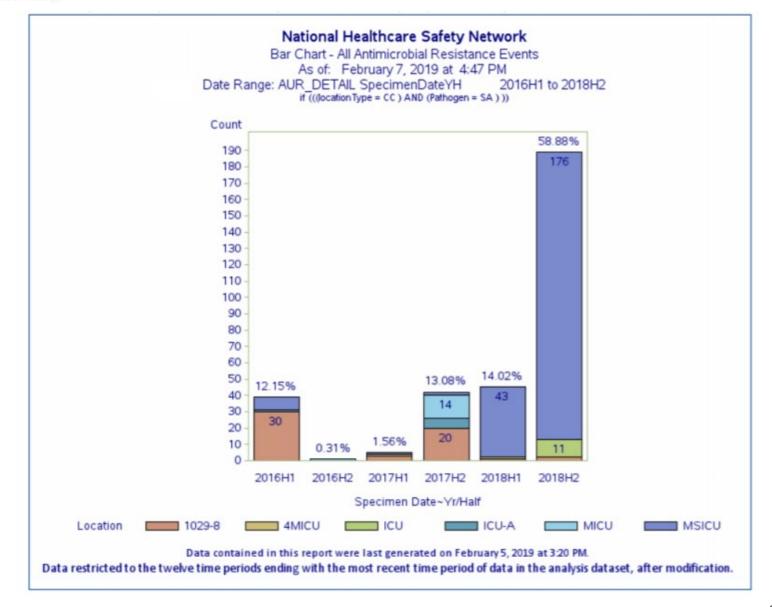
Broad HAI Category Breakdown

- 12/21 Hospitals with O/E > 1
- Piperacillin-Tazobactam driving utilization
- Unit with the most instances:
 Med Surg (6) and ICU (6)
- Other Units: LD (2)
- Other antibiotics: Gentamicin (LD)

Creation of Custom Reports NHSN Antibiotic Module

Tip: Use the "in" operator to select multiple values of a variable. For example, location in (22ICU, 72ORTHO) would include all records where the location is either 22ICU or 72ORTHO. Many variables, such as location, supply drop-down menus for selection; other variables, such as "CLABCount", allow a free text field for entry of values.

Example 1


Suppose you wish to view a line list of CAUTIs in which MRSA or VRE were identified.

 Because we wish to restrict the report to specific multi-drug resistant organisms (MDRO), select from the drop-down menu for each MDRO by selecting the "add rule" box.

 Consider each row (addition of a rule) in the selection criteria grid its own equation/filter. Therefore, in this example, MRS A = Y and VRE = Y are on two separate rows/rules.

NHSN Antibiotic Resistance Module

Summary - IP Role in Antibiotic Stewardship

- Advocate for a role consistent with your capabilities
- Protect from wasted time
- Evaluate early in your facility
- IPs have unique skills
 - Relations with multiple disciplines particularly nursing
 - Are educators and recognized as resource for information in resistant organisms
 - Generally have early awareness of problem pathogens
 - Can augment efforts to prevent transmission using ABS
 - Often aware of critical cases before ID
 - Background with NHSN

QUESTIONS?